Building a RAG System with Ollama and LanceDB: A Comprehensive Tutorial

This tutorial walks through building a Retrieval-Augmented Generation (RAG) system for BBC News data using Ollama for embeddings and language modeling, and LanceDB for vector storage.
System Architecture
The system consists of several key components:
- LLM Interface: An async interface for large language models
- Embedder: Handles document and query embedding
- Vector Store: Manages storage and retrieval of embedded documents
- Component Factory: Creates instances of the above components
- Main RAG System: Orchestrates the entire pipeline
Prerequisites
- Python 3.7+
- Ollama running locally (default: http://localhost:11434)
- Required packages:
- httpx
- pandas
- lancedb
- pydantic
Component Breakdown
1. LLM Implementation (ollama.py)
The AsyncOllamaLLM
class provides an async interface to Ollama’s API:
class AsyncOllamaLLM(LLM):
def __init__(self, model_name: str = "llama3.1", base_url: str = "http://localhost:11434"):
self.model_name = model_name
self.base_url = base_url
self.client = httpx.AsyncClient()
Key features:
- Async HTTP client for API communication
- Support for both streaming and non-streaming generation
- Context manager for proper resource cleanup
2. Embedder Implementation (ollama_embedder.py)
The AsyncOllamaEmbedder
handles document embedding:
class AsyncOllamaEmbedder(Embedder):
def __init__(self, model_name: str = "mxbai-embed-large", base_url: str = "http://localhost:11434"):
self.model_name = model_name
self.base_url = base_url
self.client = httpx.AsyncClient()
Features:
- Integration with LanceDB’s embedding registry
- Async document and query embedding
- Dimension information for vector storage
3. Vector Store Implementation (lancedb_store.py)
The AsyncLanceDBStore
manages embedded documents:
class AsyncLanceDBStore(VectorStore):
def __init__(self, embedder, db_path: str = "./lancedb", table_name: str = "documents"):
self.db = lancedb.connect(db_path)
self.table_name = table_name
Key capabilities:
- Async document storage with metadata
- Vector similarity search
- Thread-safe operations with async locks
Setting Up the RAG System
- First, create a configuration dictionary:
config = {
"llm": {
"type": "ollama",
"model_name": "llama3.2"
},
"embedder": {
"type": "ollama",
"model_name": "nomic-embed-text"
},
"vector_store": {
"type": "lancedb",
"db_path": "./data/lancedb",
"table_name": "documents"
}
}
- Initialize the RAG system:
rag = BBCNewsRAG(config)
await rag.initialize()
- Ingest your data:
df = pd.read_csv('data/data.txt')
await rag.ingest_data(df)
- Query the system:
response = await rag.query(
"Who is Aarin Chiekrie?",
system_prompt="You are a helpful assistant that provides accurate information based on the news articles."
)
Best Practices
- Resource Management
- Always use async context managers or explicit cleanup
- Close connections properly using
await rag.close()
- Error Handling
- Implement proper error handling for API calls
- Check for missing or malformed data
- Configuration
- Keep configuration separate from code
- Use environment variables for sensitive information
- Performance
- Use connection pooling for HTTP clients
- Implement caching where appropriate
- Use async operations for I/O-bound tasks
Common Pitfalls
- Not properly closing async resources
- Forgetting to handle API rate limits
- Missing error handling for embedding operations
- Not considering thread safety in vector store operations
Advanced Usage
Custom Embedding Models
You can extend the system to use different embedding models:
class CustomEmbedder(Embedder):
async def embed_documents(self, documents: List[str]) -> List[List[float]]:
# Your custom embedding logic here
pass
Custom Vector Stores
Implement different vector stores by extending the base class:
class CustomVectorStore(VectorStore):
async def store_embeddings(self, documents, embeddings, metadata=None):
# Your custom storage logic here
pass
Conclusion
This RAG system provides a robust foundation for building document-based question-answering systems. Its modular design allows for easy extension and customization, while the async implementation ensures efficient resource usage.
For production deployment, consider:
- Implementing proper logging
- Adding monitoring and metrics
- Setting up proper error handling and retries
- Implementing caching mechanisms
- Adding authentication and authorization
The system can be extended to handle different document types, embedding models, and vector stores by implementing the appropriate interfaces.
Source code
https://gist.github.com/dewmal/e8f0296bd9743d3fa9dd5841a65d3cdd